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Abstract :  The MapReduce applications used for processing petabytes of data across the enterprise. Controlling the allocation of resources 
in shared MapReduce environments is a key challenge. Many users require job completion time guarantees. There is an increasing number 

of MapReduce applications associated with live business intelligence that require completion time guarantees (SLOs). There is a lack of 

performance models and workload analysis tools for automated performance management of such MapReduce jobs. None of the existing 

Hadoop schedulers support completion time guarantees(SLOs). A key challenge in shared MapReduce clusters is the ability to 

automatically tailor and control resource allocations to different applications for achieving their performance SLOs. We implemented a 

novel SLO-based scheduler in Hadoop by making use of ARIA framework, that determines job ordering and the amount of resources to 

allocate for meeting the job deadlines. The new scheduler effectively meets the jobs' SLOs until the job demands exceed the cluster 

resources. This paper is all about EDF Scheduler Design , EDF Scheduling Algorithm, Algorithmic Complexity of EDF Scheduling Scheme 

as well as SWOT analysis of EDF Scheduler. 

IndexTerms - Hadoop, MapReduce, Resource Allocation, SLOs, Scheduling 

 

I. INTRODUCTION 
Early versions of Hadoop had a very simple approach to scheduling users jobs: they ran in order of submission, using a FIFO scheduler. 

Typically, each job would use the whole cluster, so jobs had to wait their turn. Although a shared cluster offers great potential for offering 

large resources to many users, the problem of sharing resources fairly between users requires a better scheduler. Production jobs need to 

complete in a timely manner, while allowing users who are making smaller ad hoc queries to get results back in a reasonable time. Later on, 

the ability to set a job’s priority was added, via the mapred.job.priority property or the setJobPriority() method on JobClient (both of which 

take one of the values VERY_HIGH, HIGH, NORMAL, LOW, VERY_LOW).  

 

MapReduce applications process PBs of data across enterprise. Key challenge: controlling the allocation of resources in shared 

MapReduce environments. Many users require job completion time guarantees. There is no support from existing schedulers FIFO,  Fair 

Scheduler, Capacity Scheduler. In order to achieve Service Level Objectives (SLO), we need to answer, When will the job finish given 

certain resources? and How much resources should be allocated to complete the job within a given deadline? 
Currently, there is no job scheduler for MapReduce environments that given a job completion deadline, could estimate and allocate the 

appropriate number of map and reduce slots to the job so that it meets the required deadline. In this work, we design a framework, called 

ARIA. 

We implement a novel SLO-scheduler in Hadoop that determines job ordering and the amount of resources that need to be allocated for 

meeting the job’s SLOs. The job ordering is based on the EDF policy (Earliest Deadline First). For resource allocation, the new scheduler 

relies on the designed performance model to suggest the appropriate number of map and reduce slots for meeting the job deadlines. The 

resource allocations are dynamically recomputed during the job’s execution and adjusted if necessary. 

 
   Fig. 1. Job Scheduling in Hadoop 

 

 

II. LITERATURE REVIEW 

 

WhereverTimesisspecified,TimesRomanorTimesNewRomanmaybeused.Ifneitherisavailableonyourwordprocessor,pleaseusethefontclos

estinappearancetoTimes.Avoidusingbit-mappedfonts.TrueType1orOpenTypefontsare required.Pleaseembed all fonts, in particular 

symbolfonts,aswell,formath,etc. In this paper[2], M. Zaharia, D. Borthakur, J. Sen Sarma proposed Hadoop Fair Scheduler in order to 

maintain fairness between different users to allocate equal shares to each of the users running the MapReduce jobs and to maximize data 
locality 

In the paper[3], To address the conflict between locality and fairness, authors propose a simple algorithm called delay scheduling. 

In paper[4],Matei Zaharia proposed LATE scheduler which is highly robust to heterogeneity and can improve Hadoop response times. 

It uses estimated finish times to speculatively execute the tasks that hurt the response time the most. LATE performs significantly better than 

Hadoop’s default speculative execution algorithm in real workloads on Amazon’s Elastic Compute Cloud.  

In Paper[5], T.Sandholm and K. Lai proposed Dynamic proportional share scheduler in Hadoop which allows users to offer for map and 

reduce slots by adjusting their spending over time and approach enables dynamically controlled resource allocation.It allows users to control 
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their allocated capacity by adjusting their spending over time. Allows scheduler to make more efficient decisions about which jobs and users 

to prioritize and gives users the tool to optimize and customize their allocations to fit the importance and requirements of their jobs. 

In papers[5,6],M. Isard, M. Budiu suggested Quincy scheduler to achieve fairness and data locality goals for Dryad environment. The 

authors design a novel technique that maps the fair scheduling problem to the classic problem of min-cost flow in a directed graph to generate 

a schedule. A powerful and flexible new framework for scheduling concurrent distributed jobs with fine-grain resource sharing. The 

scheduling problem is mapped to a graph data structure, where edge weights and capacities encode the competing demands of data locality, 

fairness, and starvation-freedom, and a standard solver computes the optimal online schedule according to a global cost model. 

In Paper[7], J. Wolf extended HFS by proposing a special slot allocation schema that aims to   optimize explicitly some given scheduling 

metrics (response time, stretch, makespan and Service Level Agreements (SLAs), among others) while ensuring the same minimum job slot 

guarantees as in HFS, and maximum job slot guarantees as well. FLEX relies on the speedup function of the job (for map and reduce stages) 
that produces the job execution time as a function of the allocated slots. 

In Paper[8], K. Morton, M. Balazinska used ParaTimer for estimating the progress of parallel queries expressed as Pig scripts that can 

translate into directed acyclic graphs (DAGs) of MapReduce jobs. ParaTimer targets environments where declarative queries are translated 

into ensembles of MapReduce jobs. 

 

III. PROPOSED WORK 

 We have discussed different scheduling techniques in Hadoop available upto date. 

3.1  Scheduler Design 

 

 
Fig.2 Scheduler Design 

 

Our goal is to propose a novel Deadline based scheduler for Mapreduce environments that supports a new API in which a job can be 

submitted with a desirable job completion deadline. The scheduler will then estimate and allocate the appropriate number of map and reduce 

slots to the job so that it meets the required deadline.To achieve this goal, we designed and implemented a framework, called ARIA, to 
address this problem. 

3.1.1. Job Profiler:  

 It collects the job profile information  for the currently running or finished jobs. We use the Hadoop counters which are sent 

from the workers to the master along with each heartbeat to build the profile. This profile information can also be gleaned from the logs in 

the HDFS output directory or on the job master after the job is completed. The job profile is then stored persistently in the profile database. 

We create a compact job profile that is consists of performance invariants that reflects all the phases of a given job viz, : map, shuffle, 

sort, and reduce phases, which are independent of the amount of resources assigned to the job over time. This information is obtained from 

the counters at the job master during the job’s execution or parsed from the logs. The map stage consists of a number of map tasks. To 

compactly characterize the task duration distribution and other invariant properties, we extract the following metrics: 

(Mmin , Mavg , Mmax , AvgSizeinputM , SelectivityM ), 

 where, 

• Mmin – the minimum map task duration. Mmin serves as an estimate for the beginning of the shuffle phase since it starts when 
the first map task completes.  

• Mavg – the average duration of map tasks to summa-rize the duration of a map wave. 

• Mmax – the maximum duration of map tasks. It is used as a worst time estimate for a map wave completion.  

• AvgSizeinputM - the average amount of input data per map task. We use it to estimate the number of map tasks to be spawned 

for processing a new dataset.  

• SelectivityM – the ratio of the map output size to the map input size. It is used to estimate the amount of intermediate data 

produced by the map stage.  

• The job profile in the shuffle phase is characterized by two pairs of measurements: (Sh1avg , Sh1max , Shtypavg , Shtypmax ). 

• The reduce phase begins only after the shuffle phase is complete. The profile of the reduce phase is represented by:(Ravg , 

Rmax , SelectivityR ) : the average and maximum of the reduce tasks durations and the reduce selectivity, denoted as SelectivityR , which 

is defined as the ratio of the reduce output size to its input. 
3.1.2 Profile Database:  

 We use a MySQL database to store the past profiles of the jobs. The profiles are identified by the user and job name which can 

be specified by the application. 

 

3.1.3 Slot Estimator: 

  Given the past profile of the job and the deadline, the slot estimator calculates the minimum  number of map and reduce slots 

that need to be allocated to the job in order to meet its SLO. It uses the Lagranges Multiplier method to find the minima on the allocation 

curve. 
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where, 

 AlowJ = Mavg, BlowJ = (Shtypavg + Ravg), and ClowJ =Sh1avg − Shtypavg.  

The equation provides an explicit expression of a job completion time as a function of map and reduce slots allocated to a job J for 

processing its map and reduce tasks, i.e., as a function of (NJM,NJR) and (SJM, SJR).The equations for TupJ and TavgJ can be written 

similarly. 

 

3.1.4 Slot Allocator: Using the slots calculated from the slot estimator, the slot allocator assigns tasks to jobs such that the job is always 

below the allocated thresholds by keeping track of the number of running map and reduce tasks. In case there are spare slots, they can be 

allocated based on the additional policy. There could be different classes of jobs, jobs with and without deadlines. The jobs with deadlines 

will have higher priorities for cluster resources than jobs without deadlines. Once jobs with deadlines are allocated their required minimums 

for meeting the SLOs, the remaining slots can be distributed to the other job classes. 
 

3.1.5 SLO-Scheduler: This is the central component that co-ordinates events between all the other components. Hadoop provides a 

support for a pluggable scheduler. The scheduler makes global decisions of ordering the jobs and allocating the slots across the jobs. The 

scheduler listens for events like job submissions, worker heartbeats, etc. When a heartbeat containing the number of free slots is received 

from the workers, the scheduler returns a list of tasks to be assigned to it. 

The SLO-scheduler has to answer two inter-related questions, which job should the slots be allocated and how many slots should be 

allocated to the job? The scheduler executes the Earliest Deadline First algorithm (EDF) for job ordering to maximize the utility function of 

all the users. The second question is answered using the Lagrange computation. The detailed slot allocation schema is shown in the following 

Algorithm. 

 

      3.2. EDF Scheduling Algorithm 
Step 1: Start 

Step 2: Create Job Profile database by    considering past running history of each job. 

Step 3: Submit a job application 'J' with SLO-     deadline. 

Step 4: Collect profile of a job 'J' from the     database. 

Step 5: Estimate amount of map and reduce    slots (m_j,r_j)using Lagranges multiplier method. 

Step 6: After receiving heartbeat from node 'n' sort jobs in order of deadline present in the database. 

Step 7: If free map/reduce slot 's' is present on   node 'n'. If Yes then goto step 8 else goto step 15. 

Step 8: Verify if  〖Runningmaps〗_j <  m_j  and s is        a map slot 

Step 9: If job J has unlaunched map task t with data on node n. 

Step 10: If YES then launch a map task 't' with local data  on node 'n'. 

Step 11: If NO then launch map task 't'with any other node 'n'. 

Step 12: If  〖Finishedmaps〗_j > 0 and 's' is a reduce slot and 〖Runningreduces〗_j<rj 

Step 13: If YES launch task 't' on node 'n'. 

Step 14: Goto Step 8. 

Step 15. If each task T_j  is finished by node 'n'  present. If YES then goto step 17 else goto step 20. 
Step 16: Recompute slots (m_j,r_j) based on the current time, current progress and deadline of job J. 

Step 17: Store job execution history during map, reduce, shuffle, sort durations for each tasks in profile database. 

Step 18: Update profile database after job gets completed. 

Step 19. Stop. 

3.3 Description of EDF Scheduling Algorithm 

The EDF Scheduling Algorithm consists of two parts : 1) when a job is added, and 2) when a heartbeat is received from a worker. 

Whenever a job is added, we fetch its profile from the database and compute the minimum number of map and reduce slots required to 

complete the job within its specified deadline using the Lagrange's multiplier method. 

Workers periodically send a heartbeat to the master reporting their health, the progress of their running tasks and the number of free map 

and reduce slots. In response, the master returns a list of tasks to be assigned to the worker. The master tracks the number of running and 

finished map and reduce tasks for each job. For each free slot and each job, if the number of running maps is lesser than the number of map 
slots we want to assign it, a new task is launched. The preference is given to tasks that have data local to the worker node. Finally, if at least 

one map has finished, reduce tasks are launched as required. In some cases, the amount of slots available for allocation is less than required 

minima for job J and then J is allocated only a fraction of required resources. As time progresses, the resource allocations are recomputed 

during the job's execution and adjusted if necessary. Whenever a worker reports a completed task, we decrement NJM or NJR in the SLO-

based model and recompute the minimum number of slots. 

 
IV. Algorithmic Analysis of EDF Scheduler 

 
4.1 Algorithmic Complexity of EDF Scheduler 
V. The data in the selected datasets is handled using parallel approach. The complete dataset is divided amongst mapper. In 

this way parallel computation using MapReduce takes place. Thus, the complexity of is O (n) and for Sorting of 'n' Jobs from 
the queue as per the deadline will take O(nlogn) complexity. In worst case, sorting will take O(n^2) complexity. 
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4.2 NP Completeness of EDF Scheduling 
 

 
 

Fig 3. NP Completeness 
Where-  

NP-C: NP Complete 

       NP-H: NP Hard 

Only a decision problem can be NPC. Optimization problems may be NPH. Optimization problems may reduce to corresponding decision 

problem. Optimization problems cannot be NP Complete where decision problem can. If algorithm has n products which go on increasing, 

then it will be NPH. But it is restricted to fixed n, it will convert to NPC.  

This problem will come under NPC as well as NPH. Its NPC because its related to predicting approximate makespan bound  time and  

coming to certain decision which is a probabilistic good algorithm and can be solved in non-polynomial time. It becomes NPH if worker 

node fails and master doesn't receive heartbeat then master can go in infinite loop to search for node which has empty map & reduce slots to 

assign task. Also, if a number of jobs in a queue increase then due to contention and due to increase in waiting time, it can go to NP-Complete 
state. 

 

  V.  SWOT ANALYSIS OF EDF SCHEDULER 

 

SWOT is a planning tool used to identify Strengths, Weaknesses, Opportunities and Threats involved in any Strategic planning Method 

or Process. SWOT Analysis for the EDF Scheduling Algorithm is described as below: 

5.1 Strengths: 

 This scheduler is useful in controlling the allocation of resources in a shared MapReduce environments which is a key challenge. 

 Many users require job completion time guarantees, Existing schedulers do not support SLOs, this  project will be useful in 

achieving SLOs. 

 It performs jobs ordering in Earliest Deadline First(EDF) fashion. 

 This scheduler computes required resource allocation for a job from its historic profile and a given deadline T 
 The scheduler is automatic. 

 It preserves data locality. 

 This scheduler is robust against runtime variability 

 It profiles the job while it is running. 

 It does dynamic adjustments of the allocation of resources. 

 The new scheduler effectively meets the jobs' SLOs until the job demands exceed the cluster resources. 

 Comparative study of different Hadoop Schedulers is done. 

 

 

5.2 Weakness: 

 If we build profile by executing on smaller datasets, then duration of map tasks not impacted. 
 If we build profile by executing on Larger datasets, then greater number of map tasks 

 Each map task processes fixed amount of data 

 If number of reduce tasks kept constant, intermediate data processed per reduce task increases for longer durations. Reduce 

stage = shuffle + reduce phase 

 Shuffle duration depends on network performance 

 Reduce duration depends on reduce function and disk write speed  

 Proper division of the computation is required for optimization of different set of input dataset sizes. 

 Different amount of resources can lead to different executions viz,Job execution can be very different depending on the amount 

of allocated resources. 

 

5.3 Opportunities: 

 Designed to meet Job's SLOs and to give Service Completion time guarantees. 
 It is useful for users who require service guarantees. 

 Many enterprises, financial institutions and government organizations are experiencing a paradigm shift towards large scale 

data intensive computing. Analyzing large amount (petabytes) of unstructured data is a high priority task for many companies. 

So, for large scale data processing Hadoop-Mapreduce is used most popularly. 

 It is increasingly being used across the enterprise for advanced data analytics and enabling new applications associated with 

data retention, regulatory compliance, e-discovery and litigation issues. 

 In MapReduce environments, many production jobs are run periodically on new data. For example, Facebook, Yahoo!, and 

eBay process terabytes of data and event logs per day on their Hadoop clusters for spam detection, business intelligence and 

different types of optimizations. 

 For the production jobs that are routinely executed on the new datasets, we can build on-line job profiles that later are used for 

resource allocation and performance management by the job scheduler. 
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 Benchmarking Hadoop, optimizing cluster parameter settings, designing job schedulers with different performance objectives, 

and constructing intelligent workload management in shared Hadoop clusters create an exciting list of challenges and 

opportunities for the performance analysis and modeling in MapReduce environments. 

 Much faster in performing computations using MapReduce. 

 Helps in realizing the full potential of the MapReduce. 

 

5.4. Threats: 

 If commodity hardware  fails then more failures to system may happen. 

 It's performance depends on Time of failure and whether resources replenishable or not. 

 In Worker failure, there may be faulty hard disk or process may crash. 
 Time of failure also matters in recovery process.  

 If failure happens in map stage, recompute all completed or in-progress map tasks of the failed node. 

 If failure happens in Reduce stage, recompute all in-progress reduce tasks of the failed node and the shuffle phase of these 

reduce tasks too. 

 If number of jobs increase in the job queue then waiting time may increase. 

 The accuracy of new performance models might depend on the resource contention, especially, the network contention in the 

production Hadoop cluster. 

 Typically, service providers tend to over provision network resources to avoid undesirable side effects of network contention.  

 

VI. CONCLUSION 

 
In this paper, we have used  a novel performance modeling  framework ARIA (Automatic Resource Inference  and Allocation)  to achieve 

performance goals and Deadlines, need for job completion time guarantees , for  applications that use a MapReduce cluster for resource 

sharing in enterprise setting. The paper has introduced bounds-based performance model which is quite accurate. Proposed MapReduce job 

profiling is compact and comprised of performance invariants, required by the SLO-scheduler. Robust prediction of required resources for 

achieving given SLOs. EDF scheduling is a main policy for real-time processing. The implemented EDF scheduling algorithm improves the 

job completion time, response time in Hadoop environment. In this paper, we performed Algorithmic Complexity Analysis of EDF 

Scheduler. We have found Strengths, Weakness, Opportunities & Threats, in the EDF Scheduler. 
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